A Graphene Oxide-Based Fluorescent Aptasensor for the Turn-on Detection of CCRF-CEM
نویسندگان
چکیده
A convenient, low-cost, and highly sensitive fluorescent aptasensor for detection of leukemia has been developed based on graphene oxide-aptamer complex (GO-apt). Graphene oxide (GO) can absorb carboxyfluorescein-labeled Sgc8 aptamer (FAM-apt) by π-π stacking and quench the fluorescence through fluorescence resonance energy transfer (FRET). In the absence of Sgc8 target cell CCRF-CEM, the fluorescence is almost all quenched. Conversely, when the CCRF-CEM cells are added, the quenched fluorescence can be recovered rapidly and significantly. Therefore, based on the change of fluorescence signals, we can detect the number of CCRF-CEM cells in a wide range from 1 × 102 to 1 × 107 cells/mL with a limit of detection (LOD) of 10 cells/mL. Therefore, this strategy of graphene oxide-based fluorescent aptasensor may be promising for the detection of cancer.
منابع مشابه
A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide.
A simple, sensitive and selective turn-on fluorescent aptasensor for adenosine detection was developed based on target-induced split aptamer fragment conjunction and different interactions of graphene oxide and the two states of the designed aptamer sequences.
متن کاملVisual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip.
Rapid and efficient measurement of cancer cells is a major challenge in early cancer diagnosis. In the present study, a miniature multiplex chip was created for in situ detection of cancer cells by implementing a novel graphene oxide (GO)-based Förster resonance energy transfer (FRET) biosensor strategy, i.e. assaying the cell-induced fluorescence recovery from the dye-labeled aptamer/graphene ...
متن کاملInvestigation of the Effect of Folic Acid Based Iron Oxide Nanoparticles on Human Leukemic CCRF-CEM Cell Line
Abstract Background Nanoparticulate drug delivery systems have attracted significant attention in the field of cancer nanotechnology. This study determines the effect of folate-based Fe2O3 nanoparticles. This study aimed to decorate nanoparticles with folate (FA), a molecular ligand for ‘active’ targeting of cancerous cells and the application of modified-nanoparticles in cancer treatment. ...
متن کاملA graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1.
Mucin 1 (MUC1) which presents in epithelial malignancies, is a well-known tumor biomarker. In this paper, a highly sensitive and selective fluorescent aptasensor for Mucin 1 (MUC1) detection is constructed, utilizing graphene oxide (GO) as a quencher which can quench the fluorescence of single-stranded dye-labeled MUC1 specific aptamer. In the absence of MUC1, the adsorption of the dye-labeled ...
متن کاملتشخیص آنتیژن اختصاصی پروستات با استفاده از بیوسنسور الکتروشیمیایی مبتنی بر آپتامر
Background and Objectives: Detection of the biomarkers is one of the effective methods for diagnosis and treatment of prostate cancer. Prostate specific antigen (PSA) is currently the best biomarker available for controlling and detecting this cancer. The purpose of the current study was to design an electrochemical aptamer-based biosensor (electrochemical aptasensor) to measure...
متن کامل